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Introdu-tion

Recently there has been renewed interest in supersymmetric field
theories1 as a possible vehicle for making realistic phenomenological models
ofbparticle physics which do not suffer from the need to fine tune the bare
masses in the boson sector of the theory. In ordinary theories the meson
radiative correction are of order of A2 where A is the cutoff, usually assumed

to be the Grand unified scale (~ 1015

GeV). The fact that the generators of
supersymmetry transformations convert bosons into fermions and that fermion
masses can stay zero because of ciiiral symmetries allows a solution of the
fine tuning prublems.2

In a real.stic model based op supersymmetry (SUSY), supersymmetry must be
broken because of the lack of observed boson partners to the light leptons.
One can prove that in weak coupling perturbation theory, if the classical
(tree level) approximation to the theory is supersymmetric, then perturbative
radiative correctiens do not break supersymmetry. Thus, in making realistic
mode]l field theories, one must break SUSY at the tree level or nonperturba-
tively. It is thus important to have a nonperturbative method of determining
if in a given theory supersymmetry is broken.

One rveason for studying supersymmetric quantum mechanics is that there
are a class of ruperpotentials W(x) which beliave at large x ay x" for which we
know from general arguments whether SUSY is broken or unbroken. Thus one can
use these supcrpotentials to test various ideas about how to see if supersym-
metry is broken in aa sorbitrary model.

Re(‘ontly,3 Witter. proposed a topological invariant, the Witten index A
which counts the number of bosons minus the number of fermions having ground
state energy zero. Since if supersymmetry is droken, the ground state energy

cannot be zero, one ecxpecty if A ix not zervo, SUSY is preserved and the theory



is not a good csndidatz for a realistic model. In this study we evaluate A
for several examples, and show some unexpected peculiarities of the Witten
index for certain choice of superpotentials W(x).a In this survey we also
discuss two other nonperturbative methods of studying supersymmetry breakdown.
One involves relating supersymmetric quantum mechanics to a stochastic clas-
sical problem5’6 and the other involves considering a discrete (but not super-
symmetric) version of the theory and studying its behavior as one removes the
lattice cut!:off.7’8

In this survey we review both the H.miltonian and path integral approaches

2,5,9

to supersymme tric quantum mechanics. We then discuss the related pata

integrals for the Witten Index and for stochastic processes and show how they

are indications for supersymmetry breakdown. We then disciss a systeas where

4,14

the superpotenial W(x) has assymetrical values at o, We find that in

that case pairing is broken in that there is 2 mismatch between the fermionic
and bosonic continuum density of states. Also, the Witten index is dependent
on the regulation parameter f. We finally discuss nonperturbative strategies
for studying supersymmetry breakdown based on introducing a lattice and s:iudy-
ing the behavior of the ground state energy as the lattice cutoff is

7,8

removed.

I1. Supersymmetric Quantum Mechanics and Spontaneous Supersymmetry Breaking

in the Hamil ';9!.1i.sn._ﬁ_orme.‘-.é_ﬁmz 39

The sypersymmetry algebra in D = 1 is generated by the charges

¥

* ~ ~ ok B3
(p+iwWx))V¥Y , {Q,Ql}=0

Q

H

- A - (1)
(p-iWxHY , {Q,Q}=0

<
t

where

A

. e
lp, x| = -i , (¥, ¥} =1



One has that

{Q", Q} = 21 (2)
so that
- ~, e
H=yp? o+ wfeo - Bty (3)

*
(H, Q] = [H, ¢ 1 =0

One can also define a "fermion" number operator

F *
(-1) =1-2V¥%VY 4)

*
which anti-commutes with Q, Q . One can realize the above algebra in one

*
dimension by the following matrix representation for ¥ and Y.

¥V =0 =( ) , ¥Y=0 =( ) . (5)

In this representation

b3
0F =0, Hadla g (6)

and the Hamiltonjan is diagonal

o
Bo=alp? + W (0] + = W) )
or
DL | o H_ |
T I (8)
o | Db_ b | H,
o Q



The eigenstates of H can be written as the vector
(=)
n

9
o)
n

where the * correspods to (-1)F being *1: i.e., the + corresponds to the

bosonic states and the - to the fermionic states. From Eq. (8) and

HY =E VY (10)

we obtein

) 2 o) (-)
D_ ¥’ = E ¥

%
-iQ ¥

(11)

(+) (<) - o w(¥)
D, ¥, VE YT = Q¥
which shows how supersymmetry pairs the positive energy solutions.

Next we want to discuss supersymmetry breaking. For supersymmetry to be

a good symmetry
i
Qlo> =qQ 0> = 0/0> (12)

where |0> denotes the vacuum state. From (12) and (2) we find that for super-
symmetry to be a good symmetry the ground state energy must be zero. From
(11) we then see when supersymmelry is broken, E8 # 0, the ground state must
be degenerate.  One measure of supersymmetry breaking is the Witten index3
A= Tr(-l)F. Since the finite energy states are fermi-bose paired, this
quantity measures N+(E = 0) - N (E =0), the difference of zero energy boson
and fermion states. Thus, if A # 0, supersymmetry is unbroken. Usually

F ., . , ) .
Tr(-1) is i1l defined so instead one considers

-pH, iB"‘)

ap) = 1r(-0F P oy (« - (13)



Following Akhoury and Comteta it is useful to introduce the heat kernels

Ki(x,y B) which satisfy

2
d ' _
- L W EWK, =0 (14)

(-3
dp dx

] -BE
K, (x,y,8) = <yle PP = 2 e " " vl wiy)

Using states normalized to one we obtain

A(B) = fdx[K, (x,x,B) - K_(x,x,B)] . (15)
If there are also continuum states in the spectrum then one has

A®) =N, E=0) - N(E=0 + [ aePEo @) - p_(B)] (16)

E
0

where p (E) are the corresponding density of states. Thus, only if the den-
sity of states for bosons and fermions are different will A(B) depend on B.
This will be important for our later discussion.

When the superpotential W(x) ~ xa for large values of x, then it is easy
to discuss supersymmetry breaking. For supersymmetry to be preserved one uas

‘ Wg-) (x)
HY =0 , ¥ = WO (17)
)

or Jrom (11)

G2 - W) ¥ = o

X 0
(18)

3 w(t) .
(E)x + W(x)) r'() -



Thus we obtain

Wé~) = A ejW(x)dx

(+) _ - [W(x)dx
1 , ¥ o = A, e . (19)

2

If W(x) ~ bx® for large x then

() (+)

, € (20)

e
1
We see when o is even there is no normalizable grourd state with zero energy.
When o is odd there is one normalizable ground state consisting of a single
boson state.

(+) _ - JWdx
Wo = A2 e (21)

0
WO - (W(+)) ’

0
such that H WO = 0. Thus we get the following picture of the spectrum when
W(x) ~ x? for large x: For a even SUSY is broken, 4 = 0, Eg > 0 and all the
eigenvalues have fermi-bose degeneracy. For o odd SUSY is & good symmetry,
A = 1, the ground state has £E = 0 and is a bose state, all excited states have
fermi-bcse degeneracy.

. 5,10

ITI. Path Integral Forualism

From the Hamiltonian (3) we have that

L=t - wleo v vy - et v (22)

Letting t*it the Euclidean path irtegral is

. k3 *
_SF+JT(jx + ¥ + n ¥dr

205, m '] = fldx]flavlfldy’ ]e (23)



*
where x is now a random variable and ¥, ¥ are now elements of a Grassman

algebra

ot

v v = v = V¥ =0

T
Sp = ,f L, dt
(o]
L, = a(atx)z + gf (x) - w*[at -W )Y . (24)

For the path integral Z[j] the boundary conditions on the fermion fields are

¥(0) = -¥(t) We next want to integrate out the fermi field. We obtain

T
2[3,1,n"] = JIDx] Det[d_ - W' (x)] exp[-f (x%/2 + w?) dt] (25)
(o]
T % -1
exp [[ n [8, - W' (x)] "~ ndr
(o]

The determinant has been evaluated by Gildener and Patrascioiu.10

- '] = . .
Det[&t W'] n Am wheve Am satisfy

la’t i} W'(X)] Wm = Am \pm

(26)
(-0, - W (x)] wm* =AW

n
Thus

¥o=C exp I dr A+ W x(T' )] (27)
o]



Imposing antiperiodic boundary conditions Wm(T) = -Wm(o) yields

T
_ i(2mtl)n 1 '
Am = T T of dt W'(x) . (29)
Thus
T A (8)/A_(0) = cosh fT ar ¥.{x) (30)
n "8/ g o 2 )
Thus
Z:Z_+Z+
z. = [ [dx] exp]-8% (31
4 = J [dx] expl-§(] )
T 2 w2
t _ = W W' (x)
SE-OI dt(2+ z(x)t 2 )
Thus as expected, from (7)
Z=Tre M = 1r T 4 pp BT (32)
=z, +2Z
e (1) e (=) _
=2 e En T +2e En T =2 e EnT
- +) . (=)
(e} = E )
If SUSY is unbroken, then E£+) =0, Eg-) > 0 and to satisfy the degeneracy

condition for n 2 1

g 2 ()
n-1

n

(33)

If SUSY is broken then E£+) = Ei-) >0 for a:l n, (n =0, 1, 2....).
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Nov from this last discussion we expect that the regulated Witten index

also has a simple path integral form. Since from (13)

SR -ﬂﬂ_)
A(B) =Tr (1) e = Trle - e , (34)
we expect
AB) =2, - Z_ (35)

where in St we integrate from zero to P instead of T. This is indeed so. To
evaluate Tr (-1)F e-",’H we need to insert eigenstates of |x> and |¥> into the

trace. Since (-1)F Ib> = |b> and (-1)F |f> = =|£> one obtains for A(B)

B *
S Lo(x,¥,¥ )dt

A(B) = [ [ax] [ [a¥] [ [av"] €° Rk (36)
but now because of the (-1)F

* %

x(0) =x(B) . W) =¥ , Y (0 =¥ (B (37)
so we have a determinant with periodic boundary conditions. Imposing
wm(T) = wm(O) in (17) yields

T
Mosifn-2 fodrW () (38)
o
so that
= sinh ! d Wl(x)
mn Am(g)/Am(O) = sinh [ dt 2 (39)
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and we obtain

g () I
ABY =2, -2 =3en F-3eTa b (40)
When SUSY is unbroken then Eﬁ:i = Ei-) and E£+) = 0. In that case, A =1,

independent of PB. When SUSY is broken, then En-’ = E§+) > 0 for all n and

A = 0, independent of B. There is also a related path integral connected with

e ]
the classical stochastic processes defined by the Langevin equationll’lh’13’5

(1) = W(x(1)) + £(1) (41)

where f(1) is a random stirring force having Gaussiaan statistics.

T 2
PIE) = N expl-y J v T8 (42)
to (o]
SO
[ Df P[f] = 1
[ Df P[£] £(1) = 0 (43)

J Df P[f] £(1) f(1') = FO 6(t - 1t')

To determine correlation functions in x resulting from the stat.,stics of

the forcing term one has

PIf] Df = P[x - W(x)] det §§| Dx . c44)
Now we hav-
el U CTON GRS (45)
(")
= -4 (s "y -9 L B '
= & [6Cr - t') - 8(v - THW )] = & (v, ")
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Where we have used the fact that this is a causal system with forward propa-

gation in time

dG

1y - - ! ___9__ - 7!
Go(t-t)-e(r ') |, v =6(r ~1') . (46)

Using this bcundary condition only the first term in the expansion of the Tr

£n survives, and apar from overall normalization

det |g§| = cTr(an)= e%fw'(x)dt 47)

Parisi and Sourlas introduced Grarsman variables to represent the determinant

I = f [dx][d¥] exp(-% [ [x% + Wo(X) + @(:)[5% W WD . (48)

However antiy :-iodic b.c. on ¥ give Z+ - 4_ ard period b.c. on ¥ give Z_ + Z_.

Forward propagation boundary condition leads to

T
b (%% WA (k) - W' () ldt

= [ P[fIDf = [ dx ¢ ° (49)

—
i

- Zstoch

+)
=z, =3e tA " (50)
with the identification of F° = % and we have used fﬁW(x)dT = [ BT F(x(t))
dt = 0 for a polynomial W(x) and periodic x(1r). In deriving (49) we also
assumed that Eq. (41) had only one solution for a given f.
*
When supersymmetry is broken and T»om, Ei ) > 0 and one carnot satisty

. . . 6 .
Z+ = 1. Thus the stochastic problem must become non-invertible. In fact,

the equation

, _ 5y
x(to) =X
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has solution5

1
[(n- (gt + o))~ ™

o
]

where

1-n
X
)

¢ = (n-1) ~ gto

This solution can blow up for t > to when n is (ven for certain X, but not

when n is odd. Furthermore, one can define a classical probability

P, (3,0 = < 6y = x(1)) >, = f Df P(£) &(y - x(1)) (53)
such that
S dy y' P_,(y) = f Df PL£) (x(1N" = < (1)> . (54)

P satisfies Fokker-Planck equation

ck
aopP 32 a
5E = aFQ «-‘é + 5—' (W(y) P (y,t—)) . (55)
oy y

for an equilibrium distribution to exist at long times t one has

P (y,t)~B(y) (56)

i
—

and  [P(y)dy

P

, )
Setting Yy

i

0, we obtain
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B(y) =N e 2/H Wy (57)

2
¥ (vl

since Wo(y) = A e-fW(y)dy from (21) and Fo = K. Thus, only when SUSY is

]

unbroken (Eo 0) does an equilibrium distribution exist for the classical

stochastic system.

IV. SUSY Without Pairigga’la

When we allow W(x) to exhibit solitonic behavior so that

¢

¢(x)-’¢+ at %

(58)
d(x)~¢_ at x

- 00

then the spectrum has a continuum as well as a finite number of bound states.

In these cases supersymmetry actually torces an asymmetry in the density of
-’- -

states p (E) # p (E) and therefore also the Witten index becomes B dependent..

1f we choose W(X) = tanh x then thc¢ Hamiltonian H, are

2 2
-—-+ 1 - 2 sechx
2
dx

oo
]

2 (57)

H
[}
:Qn
+
Ymad

For H_ there are only scattering states W(—) vhich are derined by their asymp-

totic behavior
+ikx

F (x. k) ~ ¢

g_(x,k) ~ o 1kx X »-oo (60)

E_(k) = (1 + k%)
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whereas for H+ there is one bound state

w) 2 gecnx , M) =0 (61)
[o] (o]

as well as the scattering states obtained by the supersymmetry operation (11)

GER R (-52 + tanh () (62)

- J2(1 2 kD £, ~ (-ikx + tanh x)elkE e

t JZ(1 + k%) g, ~ (+ikx + tanh x)e-lkx X*>~00

= k2
E+(k) =k + 1

Now the boundary conditions requires that W(+)(k) and w(-)(k) have dif-
ferent phase shifts making it impossible for the density of states p+(E) to be
equal to p(_)(E). In fact, using the brundary condition that W(x)»#1 at #*w

(+)

and the supersymmetry relation between Y and W(-) one can obtain a relation-

ship between the Jost functions and derive

- 1

+ - Al .
PIE) - pT(R) = o g (63)
nk(ke -~ 1)
We have from (16)
o £+ .
aB) =1+ [ dee PEpta) - p )
1
i (64)
=1 PO
This explicitly shows the $ dependence of A(B).  Thus, in this case the index

is not an integer an' is B dependent.,
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IV. Nonperturbative Strategies for Studying SUSY Breaking

Two methods for exploring field theory in the strong coupling (nonpertur-
bative) domain exist. One .s strong coupling expansions of lattice versions
of the field theory15 (on the lattice a kinetic cnergy or strong coupling
expansion is a non-singular expansion). The other is Monte Carlo evaluation
of the latticized Path Integral.16 Here we ignore the problem of trving to
make a supersymmetric lattice theory.17 Instead we introduce a time lattice
with lattice spacing a. "he lattice breaks all, or part of SUSY algebra.
Clearly the ground state energy of the lattice Hamiltonian will not be zero.
However we can ask what happens to Eo(a) as the lattice spacing a goes to

zero., Although it might be difficult in an approximation scheme to see if

Eo = 0, because we have an extra parameter, the lattice spacing one can ask
whether

E (a) ~a (65)
as a»*0. Here y is a critical exponent. If we find tuat y»0 within the accu-

racy of our calculational scheme, then one could say with confidence that the
continuum theory was supersymactric. If y+0 and Ej(a)* finite constant as a»0
A}

then we expect the continuum theory to break supersymmetry. So

Yy v« E =0 (SUsY)
Y =0k >0 (Broken SUSY) (66)
It we pertorm a Monte Carlo calculation at two decreasing small  lattace

spacings

Eo(n')
Yy = In Eo(") / In (a'/n) (67)

in the limit a' and a»*0).
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An cznalytic procedure is the strong coupling expansion of the Langevin
equation.7 For example, for W(x) = gx3, we have on the lattice Eq. (41)

becomes
E(x_ - x_ ) +gxo = f (68)
n-1 n
where €& = 1
a

One then calculates

x = 3 "x ()
n n
and finds
¢ 1/3
n [ 1/3 _-2/3 -1/3 2
= o egn b 7 - - +0(e%) ...
X0 1/3 N 2/3 (fn-l £ fn ) 0(e™) (69)
g
i e : _gx® 3 2
The ground state energy for a quantum mechanical system with V(x) = ) THBX
is given by the Virial Theorem (o be
EO = 232 x> - 3g<x2> . (70)
To perform the average over the noise we use
PIf] = i \-nfz(i)/z A (1)
B 2n

The integrals over the noise are just A functions. We find at the m'th order
in t
m
n

ho = Jg 7z 2 C"z (72)
n=y(
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where

is a dimensionless correlation length. One needs to extrapolate this finite

series from small z to infinite z. To do this one uses Pade approximants.
Assuming
E ~ 2"
o
o = lim z
z+0 Fo(z)

we obtain a sequence of approximants

o = +1, +.4766, -3.5C87, -3.4903, -3.4997, -3.4763. (74)
Thus we estimate since y = -a/3
E o~ a1.16 . (75)
(o]

This agrees with our knowledge that SUSY is good when W = gxa. It also gives
credence to the idea that one can naively put SUSY on a lattice and have it
restored in the contipuum.

We can also check this method when SUSY is broken. If we choose W(x) =
gx%/2, we can writ.e8 a strong coupling series of EO using path integral tech-

niques:

Z[J] = explh f dt f dt’' GJ?L_)G;l (t,t') 6‘\‘*(?";5] Zz 7] (76)

ZO [J] = D x exp(~ [ dt [&W2 - '72~‘ - J(t) x()])
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One the lattice t = na , Wix) = W(xn)

F(Jn) b3
Zo [J] =1 Fo) = N exp o 1n [F(Jn)/F(O)] 7
- -]
F(y) = f dt exp (-% aW2 + % aW' + ayt)
]
=2 An yn/n!
_ n 4
A = f dt t exp[-ag t /8 + ag t/2]
Y IRL IR,
Ao - 8 2hm
£ = 8—1/3 (35:\)'"1/2

The inverse propagator 83 6(t -~ t') becomes well behaved on the lattice

-1 o1
Go (nym) = ;3 (bn’ m+ 1 * 5m’

— 26nm) . (78)

The expansion in powers of G;] gives a series in €. We obtain
2
\ g 4, _ 3 :
coo= TR <y - T gl
l‘0 g~ ¥ 4, BOX7

. (79)
- g2/.3 s Cn a2n

Analyzing this serics we find
EO # 0 and y <0

Showing no evidence for SUSY as expected.
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